EnhancingPsychometricAnalysiswithInteractiveShinyItemAnalysisModules

Measurementinsocialsciencesdivergesfromthestraightforwardquantificationofphysicalattributessuchasheightorweightbecausethemeasuredtraitsarelatent,existingbeyonddirectobservation.Thesemeasurementsconsistofaconsiderableamountoferror,whichneedstobeaccountedfor,andmultipleratersand/ormulti-iteminstrumentsareinvolved.Consequently,aspectrumofstatisticalandpsychometricmodelsandtechniqueshavebeendevelopedtoanalyzesuchmeasurementsinthesocialsciences\citeprao2007psychometrics,bartholomew2008analysis,martinkova2023computational.Thesemethodologiesincludeprovidingproofsofthemeasurementreliability,andassessingvaliditybyanalyzingrelationshipswithcriterionvariablesandbyanalyzingtheinternalstructurewithfactoranalysis.Giventhatsocialsciencemeasurementtypicallyentailsmultiplecomponentssuchasitems(orcriteria,raters,occasions,etc.),thereisaparticularfocusonmodelingitemresponseswithinmulti-itemmeasurementsandcheckingthefunctioningofeachindividualitem.

Asthefieldanddatacomplexityundergoarapidevolution,itisimperativetoenableuserstoextendtheanalysesandfunctionalitiesoftheSIAapplication.Toachievethis,weareintroducingthe"SIAmodules"feature.Thiscapabilityempowersresearchersandpractitionerstodevelopadd-onSIAmodulesthatseamlesslyintegratewithandexpanduponthecapabilitiesofthemainapplication.Indoingso,wetakeinspirationfromjamovi\citepjamovi,JASP\citepjasp,andRpackagesRcmdr\citeprcmdr,Deducer\citepdeducer,andRKWard\citeprkward,allofwhichofferextensionframeworks,thusbeingsimilartoourendeavor.Apartfromtheaforementionedsoftware,boththeSIAapplicationandSIAmodulesarewrittenentirelyinR,keepingitopenforthewiderRcommunity.

ThemainSIAapplicationincludescorepsychometricmodelsandmethodsforevaluatingmulti-itemmeasurementinsocialsciences,suchasprovidingproofsofmeasurementvalidity,modelstoassessreliability,andproperfunctioningofeverysingleitem.Moreover,userscanintegrateadditionalanalysesandadvancedapproaches,suchascomputerizedadaptivetesting,textanalysis,andothers,throughtheSIAmodules.

Theconceptofvaliditydescribesthedegreetowhichanassessmentinstrumentmeasuresitsintendedconstruct.Quantitativeevidencefromvarioussourcescanbeemployed,withvariousstatisticalmodelsavailabletodemonstrateandassessmeasurementvalidityfromdifferentperspectives.Onesuchsourceofevidenceisprovidedbyanexternalvariable(criterion)measuringthesameconstructandemployingcorrelationcoefficients,ttitalic_ttests,analysisofvariance,orregressionmodels,dependingonthedatastructure.Additionally,theinternalstructureofthetest,whichisanimportantaspectofvalidity,canbeexaminedthroughfactoranalysis.

Reliability,ontheotherhand,referstotheconsistencyofmeasurementsandtheextenttowhichtheyareaffectedbyerror.Intherealmofmulti-itemmeasurements,onewayofassessingreliabilityisthroughtheanalysisofinternalconsistency,whichinvolvescorrelationsbetweenitemsorbetweensubscoresobtainedfromsplitsofthetest.Anotherapproachentailsanalyzingcorrelationsbetweenscoresderivedfrommultipletestadministrationsorassessmentsbymultipleraters,whereapplicable.Assessingreliabilityinmorecomplexdatastructuresmaynecessitatevariancecomponentmodels,offeringaflexiblealternative\citepmartinkova2023assessingIRR.

Analyzingitemresponsesisimportantfordevelopingmulti-itemmeasurementsandforadeeperunderstandingoftherespondent’straitsandcomponentsofthemeasuredconstruct.

Forinstance,considermodelingtheprobabilityofacorrectansweroritemiiitalic_iendorsementonaperson’sppitalic_pabilityθpsubscript\theta_{p}italic_θstart_POSTSUBSCRIPTitalic_pend_POSTSUBSCRIPTusinga3-parameterlogistic(3PL)model:

Ordinalmodelsmaybeemployedtoaccountforordinalresponsesinitems,suchasthoseinvolvedinpsychologicalassessments.Onesuchmodelistheadjacent-categorymodel,alsoknownastheGeneralizedPartialCreditModel(GPCM)withintheIRTframework.Inthismodel,theso-calledadjacent-categorieslogits,whichrepresentthelogarithmsfortheratioofprobabilitiesfortwosuccessivescores,areassumedtohavealinearform:

Thedevelopersaresupposedtobuildtheirsourcepackagesandsubmitthemtothefirstauthorofthepaperviae-mail.

ThesampleSIAmodulespresentedinthissectionmayserveasaninspirationforthepossibleextensionsofthemainSIAapplication.Someofthesemodulesusetheirdatasetsonly,whileothersallowinteractionwithdatafromthemainSIAapplicationorevengeneratedatasetstobepassedintothemainSIAapplication.

ThisdemonstratesthecapabilitytoextendtheIRTanalysiswithintheSIAapplication,whichcurrentlysupportsonlythetestswithasingleitemtype.Theitem-specificIRTmodelingisprovidedintherespectivetabofthemodule,alongsidesomecustomizedtraditionalitemanalyses.Additionally,themoduleoffersthefunctionalitytocreatebinarygroupingand/orcriterionvariablesfromafactorvariablewithmultiplelevels,whichcanbeutilizedforDIFdetectionwithintheSIAapplication.

TheDIF-CmodulefromtheSIAmodulespackageopensupthecoreanalysisinaninteractiveanddirectlyreproducibleway.Additionally,ThecorrespondingLearningToLearndatasetisconvenientlyaccessiblewithinthemainapplicationand,therefore,canbeanalyzedusingvariouspsychometricmodelsandapproaches.Additionally,DIFdetectionmethodsinthe"DIF/Fairness"tabofferthepossibilitytoemployanobservedscorevariableasthematchingcriterion,whichisthescorefromthe6thgradefortheLearningToLearn.ThisenablesDIF-Canalysisforthisdataset.Moreover,DIF-Cdetectiontootherdatasetsisachievablebyprovidingthe"Observedscore"variableinthe"Data"section.WhiletheDIF-Cdetectionisaccessibleinthemainapplication,theDIF-CmodulefromtheSIAmodulespackageopensupthecoreanalysisofthepaper\citepmartinkova2020dif-cinaninteractiveanddirectlyreproducibleway.Itprovidesastep-by-stepexaminationofbothscores,asummaryoftheDIF-Canalysis,andplotsofICCsforindividualitems.

AnotheraspectofdatacomplexitynotcurrentlyaddressedinthemainSIAapplicationinvolvesratingsfrommultipleraters.Whenmultipleratersareinvolved,theassessmentofinter-raterreliability(IRR)becomespertinent,typicallyanalyzedthroughmethodssuchasvarianceanalysisor,moregenerally,variancecomponentmodels\citepmartinkova2023assessingIRR.

TheIRRmodulewithintheSIAmodulespackageprovidesaninteractivedemonstrationoftheissuesofusingIRRinrestricted-rangesamplesinthecontextofgrantproposalpeerreview.Themoduledemonstratesthatwhensubsetsofrestricted-qualityproposalsareused,thiswilllikelyresultinzeroestimatesofIRRundermanyscenarios,althoughtheglobalIRRmaybesufficient\citeperosheva2021zero.

Asanotherexampleofamoduleresidinginthe"Reliability"tabofthemainSIAapplication,theIRR2FPRmoduleoftheIRR2FPRpackage\citepIRR2FPRprovidesaninteractiveillustrationofthecalculationofbinaryclassificationmetricsfromIRR,providinganestimateoftheprobabilityofcorrectlyselectingthebestapplicants\citepbartos2024irr2fpr.

EduTestTextAnalysismodulefromtheEduTestTextAnalysispackage\citepedutesttextanalysisseekstoprovideatoolforitemdifficultypredictionbasedsolelyontheitemwording\citep[see][fortheunderlyingresearch]stepanek2024.Themoduledoesnotuseanydatafromthemainapplication,nordoesituploadanytabulardata.Instead,itusestextinputfieldsandthedatabaseofseveralitemexamples.ThisisanotherdemonstrationoftheversatilityoftheSIAmodulespertainingtotheinputnature.

Anotherimportantfeaturethatthismoduleillustratesistheusageofcomplexandlargemodelsspanninggigabytesofbinarydata.Oneofthecrucialindependentvariablesinthepredictivemodelisthecosinesimilarityofdifferentitemwordingparts\citepstepanek2024,calculatedemployingtheword2vec\citepword2vecwordembeddingsmodel.Inthemodule,weimplementedamechanismthatcandownloadandcachethecompressedbinarymodelfromtheinternetondemandandutilizeitimmediatelyintheanalysis,thusprovingthatlargeandcomplexmodelsaremanageableintheproposedmodulararchitecture.TheEduTestTextAnalysismodulealsodemonstratestheuseofcompiledC++librariesthattheword2vecpackageiswrapping.

Inthispaper,wehaveoutlinedtheprocessofdevelopingnewadd-onmodulesfortheSIAinteractiveappinRwiththehelpoftheSIAtoolspackage.Wedemonstratedthefundamentalprinciplesandoptionsusingseveralmodulesthatarealreadyavailableandofvaryingcomplexity.InteractiveShinyapplicationshavethepotentialtoexpandtheusercommunity,andwhenRcodeisprovided,theyalsohelpnewcomersinadoptingR.Theplatformweintroducedforadd-onpackages,utilizedintheSIAframework,mayeaseexternalcollaborationandcustomizationofshinyprojectsingeneral.

Tothebestofourknowledge,onlyjamovi\citepjamoviandJASP\citepjaspmaketheiranalysesfullyorpartiallyavailabletobeusedprogrammaticallyfromwithinRconsoleastheybuildupontheunderlyingRpackages(jmvpackage\citepjmvforjamoviandvariouspackagesforJASP),althoughbotharemeanttoberunasastandalonesoftwarewithGUIinthefirstplace.

WeoffertheSIAtoolspackageasaresourcetofacilitateSIAmoduledevelopment.Asimilartoolkitisprovidedinthejmvtoolspackage\citepjmvtools,whichalsoprovidesafewtemplatesandcruciallyusesaproprietarycompilertocreateamodulethatcanbeusedinthejamovisoftwarewithGUI.Ontopofthat,jmvtoolsneedsaspecialJavaScriptruntimeenvironmenttooperate.ThisisalsothecaseforanothersimilarpackagecalledjaspTools\citepjaspTools,whichreliesonanumberofexternaldependenciesaswell.Incontrast,theSIAtoolsworkssolelywithintheconfinesoftheRlanguage.

ThereareseveralaspectsworthconsideringinfutureversionsoftheShinyItemAnalysis,SIAtools,andSIAmodulespackages.TheSIAtoolspackagemaybecomemorerefinedintermsofmoduletesting,building,andsubmitting.Orpossibly,whentheSIAapplicationofferstheautomaticgenerationofPDFandHTMLreports,includingmoduleresultsinthereportmaybefeasible.Furtherautomationofgeneratingthereportsviaacommand-lineenvironmentmayfosterautomation,reproducibilityandreusewithotherpackages.

Whiletheseimprovementswouldincreasetheusefulnessofthecurrentapproach,thepresentedversionalreadyrepresentsavaluableextensionoftheShinyItemAnalysispackage.Webelievethatitsinnovativenatureandpracticalutilityhavethepotentialtonotonlyinspirebutalsoinfluencefutureprojectsinthisdomain.

ThestudywasfundedbytheCzechScienceFoundationproject"Complexanalysisofeducationalmeasurementdatatounderstandcognitivedemandsofassessmenttasks"grantnumber25-16951S,bytheproject"ResearchofExcellenceonDigitalTechnologiesandWellbeingCZ.02.01.01/00/22_008/0004583"whichisco-financedbytheEuropeanUnion,andbytheinstitutionalsupportRVO67985807.TheauthorswouldliketoacknowledgeFrantiekBartoforhelpfulcommentsonthepreviousversionofthemanuscript.

THE END
1.GitHubEVREAL: Towards a Comprehensive Benchmark and Analysis Suite for Event-based Video Reconstruction (CVPRW 2023) - ercanburak/EVREALhttps://github.com/ercanburak/EVREAL
2.Stata数据处理:ietoolkit命令组介绍stata的ietooklkitietoolkit软件包是由世界银行发展影响评估部门 (Development Impact Evaluation, DIME) 开发,用于简化数据管理和分析过程。本推文是系列推文中的第一篇,整体介绍ietoolkit命令组。关于命令组中的核心命令,将在后续推文中逐一详细介绍。 ? 2. 内容 ietoolkit提供了一组命令,这些命令解决了与影响评估有关的数据管理和https://blog.csdn.net/arlionn/article/details/120389550
3.AmachinelearningtoolkitforgeneticengineeringThe promise of biotechnology is tempered by its potential for accidental or deliberate misuse. Reliably identifying telltale signatures characteristic to different genetic designers, termed ‘genetic engineering attribution’, would deter misuse, yet is https://www.nature.com/articles/s41467-020-19612-0
4.PathogenTrackandYeskit:toolsforidentifyingintracellularPathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the https://journal.hep.com.cn/fmd/EN/10.1007/s11684-021-0915-9
5.<雪藏精品>保密检查安全套装吾爱破解软件列表 1.PCScan 2.EvidenceToolkit 3.Clean Disk Security 4.Eraser 下载地址 https://wwa.lanzoujhttps://www.52pojie.cn/thread-1202651-1-1.html
6.CreatorresearchCreatorProgramHarvardT.H.ChanSchoolCreator Program Creator Research Health Coverage Fellowship Resources Team News Events Get Involved Subscribe Get in touchCreator ResearchIn an era where more and more of us are getting health?news and information?from social media, could creators help public health counter misinformation and dissemhttps://www.hsph.harvard.edu/chc/work/creator-program/creator-research/
7.全民彩8永久版全民彩8下载appV85.67.4在确定开始注册全民彩8账户,首先打开官方网址。访问可以通过直接使用搜索引擎搜索“全民彩8官网”实现。 第1步:点击注册按钮 在全民彩8主页上,您可以发现一个醒目的“注册”按钮。点击该按钮,您将被引导至注册页面。 第2步:填写注册信息 在全民彩8的注册页面,您将需要填写一些基本信息,如用户名、密码、电子邮件地http://www.4lll.cn/so/p1/C
8.RG涉密信息自检查工具(EvidenceToolkit)2012绿色中文免费版下载☉ 如果遇到什么问题,请评论留言,我们定会解决问题,谢谢大家支持! ☉ 本站提供的一些商业软件是供学习研究之用,如用于商业用途,请购买正版。 ☉ 本站提供的RG涉密信息自检查工具 (EvidenceToolkit)2012 绿色中文免费版资源来源互联网,版权归该下载资源的合法拥有者所有。https://www.jb51.net/softs/62873.html