阳光保险&清华大学:2023大模型技术深度赋能保险行业白皮书(74页).pdf在线下载

2、,阳光保险集团立足全球视野,从大模型技术与保险底层逻辑出发,认为大模型技术将从根本上改变和赋能保险,保险业需要与时俱进,把握战略机遇。事实上,人保、平安、太保、泰康、众安、ZurichInsurance、PaladinGroup等国内外保险公司和保险科技公司已经迅速行动,围绕大模型研发及应用进行布局,启动大模型在保险应用的主题创新。阳光保险集团于2023年初即启动“阳光正言GPT大模型战略工程”,积极探索和实践如何应用大模型技术重构保险业务模式。我们认为,联合产学研各方单位,深入研究大模型的技术原理,分析各保险公司和保险科技公司的大模型应用案例,将对大模型技术在保险行业落地提供实用的理论和

3、方法。因此,阳光保险集团联合清华大学五道大模型技术深度赋能保险行业白皮书(2023)大模型技术深度赋能保险行业白皮书(2023)口金融学院、中国保险学会、北京百度网讯科技有限公司、中国科学院计算技术研究所智能信息处理重点实验室共同研究编写了大模型技术深度赋能保险行业白皮书。白皮书聚焦大模型关键技术与核心能力,结合政策环境,深入剖析大模型在保险行业的多维应用场景与价值,为保险行业如何应用大模型技术、实现价值创造,提供实用参考建议。白皮书系统阐释了大模型技术与保险在底层逻辑上存在的天然契合性。一方面,大模型技术充分利用互联网上的一切数据,从而具备更高的准确性、更强的泛化能力、更低的应用门槛,实现

4、了在传统深度学习基础上的性能飞跃,满足了各行各业在多元场景中的应用需求;另一方面,保险天然就与数据紧密相连,丰富的应用场景使得保险成为大模型技术的绝佳应用领域。这种天然契合性,使得大模型和保险的结合将从“能力涌现”逐步走向“价值涌现”,其价值创造也将向从量变到质变、从改变到变革、从变革到颠覆逐步演进。大模型的深度认知能力,将改变行业对风险认知与管理的能力,推动保险行业的精算模式从“粗放预测”向“精准预知”升级,推动风险管理从相对被动的“等量管理”向相对主动的“减量管理”转变。这一转变将重塑保险行业的商业模式,引领一场颠覆性的变革,开启保险业新的发展篇章。面对当今世界百年未有之大变局,我国在党的

6、探索更多可能性。同时,我们也将与各界合作伙伴携手共进,共同推动科技保险和数字保险的发展,共创保险行业的美好未来!编委会大模型技术深度赋能保险行业白皮书(2023)目录CONTENTS大模型发展迅速加速AI价值升级11大模型技术创新,能力显著升级11生态日益完善,推动大模型落地应用14政策持续出台,助力大模型产业快速发展162.11.11.21.32.1.1投研:分析市场趋势、优化资产组合212.1.2产品设计及定价:挖掘客户需求、定价精准化212.1.3营销:赋能代理人、优化销售流程222.1.4承保:更精准的风险评估232.1.5理赔:定损智能化、助力欺诈识别2

7、32.1.6服务:赋能坐席优化客户体验242.2.1办公:辅助内容生成,降本提效252.2.2HR:提升招聘效率、优化员工服务252.2.3财务:分析和决策更准确高效262.2.4法务:分析历史案例、快速合同审查272.2.5经营决策及管理:辅助战略规划及策略优化272.2.6风控:识别风险,提升安全性282.3.1数字人292.3.2数字员工301大模型开放平台建设打造可信大模型底座323应用场景丰富大模型助保险业增效提质20保险领域:全业务流程赋能202通用领域:提升内容生成与分析效率252.2数字人与数字员工:智能化程度提升292.35

9、用评级体系554.1.4太保集团:数字员工助力审计监督提升564.1.5泰康:积极构建生态,打造大模型原生应用584.1.6众安保险:将AIGC置入科技产品,打造系统应用全新体验594.2.1PaladinGroup:承保工具UnderwriteGPT604.2.2CorvusInsurance:利用CorvusRiskNavigator平台实现核保614.2.3Simplifai:InsuranceGPT助力自动化索赔管理614.2.4苏黎世保险:使用ChatGPT辅助理赔及承保624.2.5印度Plum:PolicyGPT聊天机器人,进行客户联系服务

10、63积极探索落地大模型价值全面初现464大模型应用安全与合规42保险业大模型评测体系44国内险企躬身入局,初步探索AIGC应用落地47大模型研发工具提升模型研发效率40智能路由和审核实现大模型动态调度和内容安全413.64.2.7TokioMarine&NichidoFireInsurance:撰写答案草稿634.3互联网公司妥善布局,提供一体化解决方案644.3.14.3.25.15.25.35.45.5强化治理,推动大模型可持续发展68多方协同,构建大模型发展新生态69面临的挑战72应对措施建议73挑战与机遇并存积极布局加速赋能665国内互联网

12、自定义各类人设,支撑多类办公文案场景50图9端午节营销海报生成51图10基于自然语言,实现报表自动生成52图11不同模型自助切换,提供更优质的答案52图12构建集成开发工具常青藤辅助编程插件,实现代码辅助53图13人保大模型产品规划54图14商汤AI治理理念68图15大模型技术深度赋能保险行业白皮书(2023)1.大模型发展迅速加速AI价值升级1.1大模型技术创新,能力显著升级在人工智能的发展历程中,大模型技术的崛起无疑标志着一次历史性的突破。随着参数规模和数据规模的显著增长,大模型在各类任务中展现出更高的准确性、更出色的泛化能力以及更低的应用门槛,从而满足了各行各业日益多元

13、化的需求。学术界、研究机构、产业界以及各级政府均对大模型给予了高度的重视,从算法模型、技术生态、落地应用和政策环境等多个层面,推动通用大模型和领域专用大模型的快速发展和应用。大模型,包括广义的人工智能预训练大模型及狭义的大型语言模型(LargeLanguageModel,LLM),是一种具有庞大参数规模和高度复杂性的机器学习模型。通常来说,这种模型的参数量能够达到数十亿,甚至扩展到数万亿的惊人规模。通过在广袤无垠、未加标注的海量数据中进行大规模的预训练,这些大模型能够深入挖掘并掌握众多微妙的模式、规律和知识。它们展现出了惊人的“涌现”现象,即模型性能的准确性、表达能力的强度以及泛化能力的广

14、泛性都展现出了卓越的优势。这种“涌现”现象是大模型最引人注目的特征之一,也是它们在自然语言处理、计算机视觉等领域表现出色的原因之一。大模型可分为通用大模型和专用大模型两类,它们在设计、训练与应用上均有所区别。通用大模型的目标是处理广泛的任务和领域,具备强大的泛化能力。通常,它们基于大量的无标注数据进行预训练,然后在特定任务上实施微调。这种“预训练-微调”的方法使通用大模型能够获取丰富的语义知识,因此在各种任务中表现卓越。例如,ChatGPT就是通用大模型的典型代表,可回答各类问题、生成文本、完成编程任务等。11大模型技术深度赋能保险行业白皮书(2023)12而专用大模型是针对特定任务或领域进行

19、。例如,在医疗领域,大模型技术可以辅助医生进行疾病诊断,提高诊断的准确性和效率;在无人驾驶领域,大模型技术可以实现对道路环境的感知和分析,为自动驾驶提供安全保障。当然,大模型技术的发展也带来了一些挑战。如何保证数据安全和隐私保护成为了亟待解决的问题。此外,大模型技术可能产生歧视性、偏见性或不道德的输出,还有可能出现大模型“幻觉”,需要制定相应的政策和技术措施来确保模型的公平性、道德性。同时,随着大模型技术的不断升级,硬件设备的投入和维护成本也在不断增加。为了应对这些挑战,我们需要不断探索、研究和创新。同时,我们也需要加强合作和交流,共同推动大模型技术的进步和发展。大模型生态的发展日益完善,从底

20、层基础设施到大模型研发平台、大模型能力扩充、大模型服务平台、基于大模型的AIAgent等不同层次,各项技术及平台均在不断进步和创新。首先,在基础设施支撑上,GPU技术在近年来取得了显著的进步。随着计算能力的提升,GPU已经成为了训练大型模型的重要工具。相比于传统的CPU,GPU能够提供更高效的并行计算能力,大大提高了训练速度。同时,GPU厂商也不断推出新的产品和技术,使得1.2生态日益完善,推动大模型落地应用大模型技术深度赋能保险行业白皮书(2023)15GPU能够更好地支持大规模模型的训练。例如,NVIDIA的Ampere架构和Google的TensorProcessingUnit(

21、TPU)等新型GPU产品,为大模型训练提供了更强大的计算能力和更低的能耗。其次,大模型研发平台也在不断发展和完善。这些平台提供了一整套的工具和服务,帮助研究人员和开发者更方便地开发和部署大模型。这些平台还提供了可视化界面和编程接口,使得开发者可以更加直观地进行模型的训练和调整。例如,Google的TensorFlow、Facebook的PyTorch及百度的PaddlePaddle等深度学习框架都提供了丰富的预训练模型和API接口,使得用户可以轻松地使用这些模型进行迁移学习和微调。此外,一些开源项目,如HuggingFaceTransformers、阿里ModelScope等,也在推动大模

22、型生态的建设,为用户提供了丰富的预训练模型和API接口。百度于今年3月推出的百度智能云千帆大模型平台是全球首个一站式的企业级大模型生产平台,不仅提供基于文心一言或者第三方开源大模型的大模型服务,还提供全套工具链和开发环境,帮助企业开发自己的专属大模型。这些平台的出现,大大降低了大模型研发的门槛,使得更多的研究者和开发者能够参与到这个领域。然后,在大模型能力扩充方面,插件技术的发展为大模型生态的完善提供了重要支持。通过插件技术,用户可以方便地将不同领域的知识和数据集成到大模型中,从而提高模型的泛化能力和性能、丰富大模型应用的功能和场景。例如,一些研究团队已经开发出了针对自然语言处理、计算机视觉等

23、领域的插件,这些插件可以帮助用户快速地构建出具有特定任务能力的大模型。此外,一些公司也在积极探索插件技术的应用,例如通过插件实现与内部业务系统的链接,实现大模型与业务流程的衔接。较具代表性的大模型应用开发框架包括LangChain、LlamaIndex以及DeepsetHaystack等。大模型服务平台也争相涌现,为用户提供了众多获取大模型能力的途径。OpenAIAPI大模型技术深度赋能保险行业白皮书(2023)16作为较早向公众开放的大模型服务平台,通过提供不同的API来满足用户对不同GPT模型的需求。百度文心一言不甘示弱,提供了APP、API接口、网页版等多种形式的开放服务,更集成了插

24、件机制,有效拓展了大模型的能力边界。此外,还有微软AzureOpenAI、Midjour-ney、讯飞星火认知大模型、百川大模型等国内外大模型服务平台,如同群星闪耀,为用户提供了丰富、便捷的大模型能力访问途径。最后,基于大模型的AIAgent技术崭露头角,这个具备自主思考和执行能力的智能体,被视为通往AGI的主要途径,并将为各行各业的数字化转型提供有力的支持。据统计,目前已有近10万名开发人员正在构建自主Agent,有上百项目正致力于将AIAgent商业化。AutoGPT、MetaGPT、谷歌DeepMind的roboticagent、阿里云ModelScopeGPT等国内外AIAg

27、、实施人工智能战略计划。白宫于2023年5月23日更新发布了国家人工智能研发战略计划,该计划是对2016、2019年版国家人工智能研发战略计划的补充更新,重申了之前的8项战略目标并对各战略的具体优先事项进行了调整和完善,同时增加了新的第9项战略以强调国际合作。欧洲议会和欧盟理事会于今年6月制定了人工智能法案(AIAct),法案将人工智能系统的风险等级分为四级;对于不同风险等级,法案采取了不同程度的监管措施;并要求在欧盟范围内设计、开发和使用人工智能驱动的产品、服务和系统,需要遵循全流程风险管理措施。各国政策密集出台的背后,实质上反映出各国政府希望将人工智能技术安全深度地图3近年保险

29、型技术的迅速发展,各行各业正在经历前所未有的变革。保险行业作为数据密集型行业,具备数据优势,且应用场景丰富,是大模型的最佳应用领域之一。大模型与保险的底层逻辑不谋而合,它们共同依赖于数据和模型这一基石。大模型的底层架构以数据和模型为核心,而保险业则秉承大数法则,同样以数据和模型为基础。正因如此,保险与大模型之间存在着天然的契合点,使得大模型在保险行业的应用前景愈发广阔。2.应用场景丰富大模型助保险业增效提质20图4大模型赋能保险全业务流程大模型技术深度赋能保险行业白皮书(2023)21大模型在投研领域的应用可以包括以下几个方面:通过分析金融市场的风险和波动性,为投资者制定风险管理策略和投资

31、精准化2.1.1投研:分析市场趋势、优化资产组合金融风险管理市场趋势和价格波动分析量化交易舆情分析财务报表分析资产配置和组合优化基于大模型对客户的个人信息、消费行为、健康状况等多方面进行分析,以了解客户的需求和风险偏好。这有助于保险公司为客户提供更加个性化的保险产品,提高客户满意度和忠诚度。大模型可以帮助保险公司更好地了解市场需求,从而设计出更具竞争力的产品。例如,通过对市场趋势的分析,大模型可以为保险公司提供关于投资型保险、健康险等险种的创新建议。帮助产品精算人员更精准地识别潜在的风险因素、评估各因素的影响程度,支持千人千面的个性化定价,实现定价精准化。此外,大模型还可以根据市场变化和竞争

32、对手的策略动态调整保费,以保持竞争力。为保险精算人员提供强大的数据处理及分析工具,为保险产品设计和定价提供支持。客户需求分析产品定价数据处理及分析产品设计支持大模型技术深度赋能保险行业白皮书(2023)22在保险营销环节,大模型在售前、售中和售后的方方面面有诸多落地场景:2.1.3营销:赋能代理人、优化销售流程基于大模型技术,险企可以通过知识挂载或知识注入,打造智能化保险产品咨询机器人,为客户提供便捷的、全天候在线的保险产品咨询服务。保险产品咨询机器人可以回答客户关于保险产品的各种问题,包括保险种类、保险责任、保险期限、投保条件、保险条款、保费等等。基于大模型技术构建智能保险产品推荐机器人,

33、通过分析客户的背景、需求、偏好、风险承受能力等信息,结合保险领域大模型丰富的保险产品知识,通过自然语言交互,为客户提供个性化的保险产品推荐和配置方案建议,提高保险销售效率和客户体验。根据客户自身及家庭的特点,基于大模型具备的各类保险的功能、保障责任、特点等专业知识,针对复杂、多样的客户需求,给出专业、科学的保险配置方案建议。保险产品咨询保险产品个性化推荐保险智能配置基于大模型技术构建的智能保险销售辅助机器人,它具备更深入的客户洞察能力、更专业的领域知识、更精准的客户意图及情绪识别能力、更丰富的营销经验,可在销售过程中为代理人提供个性化的保险销售支持和建议,提高销售效率和客户满意度。代理人销售辅

35、估、保费计算及在线核保等功能,打通保险销售线上化全流程,节省人力成本,提升效率。代理人智能陪练营销素材设计全线上销售支持大模型技术深度赋能保险行业白皮书(2023)基于大模型的多模态能力,对车险现场照片的风险点、车损照片细节等进行处理和分析,有效识别车辆损失程度,并判断是否存在蓄意制造交通事故、车辆套牌等欺诈方式,提升定损效率。通过自动化的理赔申请处理、索赔处理、理赔评估、理赔审核、理赔结算,大模型可以帮助保险公司实现更快速、更准确的理赔处理。将大模型技术与地球科学、大数据技术等结合,建立针对常见灾害种类的灾害风险管理及预警体系,为客户提供气象灾害、台风路径等预警信息,提醒客户及时采取防灾减损

36、措施。基于大模型对理赔案件的欺诈风险进行评估,实现对欺诈风险由点及面的识别,为案件稽核人员提供线索,实现理赔风险排查智能化全覆盖。智能定损风险预警风险反欺诈智能理赔23大模型技术能够帮助保险公司更全面、精准地评估风险;同时能够智能辅助人工核保。2.1.4承保:更精准的风险评估大模型可以在理赔处理的各个节点提供自动化服务,从而提高理赔效率、降低成本、提升客户体验。2.1.5理赔:定损智能化、助力欺诈识别基于客户提交的保单信息,结合外部数据源的数据,大模型对保单的风险进行全面、准确的评估,帮助核保人员更准确地判断承保条件(承保责任、保额及保费等)。通过学习核保规则、承保及理赔历史数据、外部数据

37、源数据,实现基于大模型的自动核保,基于客户提交的保单数据,自动给出核保决策,提升核保效率和准确率。利用大模型发现保单中的异常信息,包括保单录入信息与客户实际信息不符、重复投保、超额投保等,提醒业务员进行进一步调查及审核,降低公司风险。风险评估自动核保异常识别大模型技术深度赋能保险行业白皮书(2023)基于大模型的上下文分析理解能力,对通话录音进行全量质检,包括语速、语调、抢插话、情绪等方面,提升质检效率。智能质检大模型可以作为培训和教育工具,帮助坐席提高业务能力和专业知识。通过对保险行业知识的学习,大模型可以为员工提供实时的答疑解惑服务,提高员工的工作效率和服务质量。培训与教育利用大模型对坐席

38、与客户的通话录音进行总结,包括客户意图、关键信息等,方便公司了解客户对产品和服务的评价,同时为坐席的服务质量评估提供参考。通话总结与注记利用大模型技术实现智能客服系统,实现与客户的7*24高质高效沟通,提升用户体验。2.1.6服务:赋能坐席,优化客户体验24基于大模型强大的智能对话能力,和客户进行7*24的高质高效沟通,提升用户体验及留存,缓解客服人力不足问题。通过对大量客户数据的分析,大模型可以帮助保险公司更好地了解客户需求,从而制定更有效的客户关系管理策略。例如,大模型可以分析客户的购买历史、服务使用情况等数据,为客户提供更加精准的服务建议。通过分析客户的个人资料和生活习惯等数据,大模型

39、可以帮助保险公司对客户的健康状况进行更精确的评估;为客户提供个性化的预防保健方案,如疫苗接种提醒等;对于已经患有疾病的客户,大模型可以提供定制化的康复计划和心理咨询服务,以帮助他们尽快恢复健康。自动问答客户关系管理客户健康管理在坐席与客户对话过程中,大模型根据上下文对客户意图及需求进行识别,为坐席推荐最优话术,提升服务质量及客户满意度。话术推荐25大模型技术深度赋能保险行业白皮书(2023)大模型在办公领域也有广泛的应用场景。2.2通用领域:提升内容生成与分析效率2.2.1办公:辅助内容生成,降本提效综上,大模型在办公领域的应用可以提高企业的工作效率,降低成本,提升用户体验,为企业带来更多

41、、文档审核等。文本生成及摘要基于用户指定的主题及要点,大模型帮助用户生成培训课件;并能根据用户给出的字体偏好、颜色搭配、布局优化等建议,提升课件的专业性和趣味性。培训课件生成大模型可以将语音转换为文字,或将文字转换为语音,方便用户利用语音与系统进行交互。语音识别与合成基于大模型的多模态能力,智能生成宣传海报、宣传视频等视觉内容,大幅提升视觉素材的生成效率。视觉内容生成大模型可以实现多种语言之间的自动翻译,帮助企业跨越语言障碍,更好地与全球客户和合作伙伴沟通。机器翻译在系统开发场景中,基于大模型进行开发代码自动补全、开发代码自动优化、测试用例自动生成等,帮助开发者更高效地编写及调试代码。编程辅助

43、,大模型可以帮助企业更准确地预测未来的人才需求。这有助于企业提前做好人才储备和招聘计划。利用大模型对员工的技能和知识进行分析,企业可以为员工提供个性化的培训和发展建议。同时,它还可以协助企业构建智能的学习平台,提高培训效果。简历筛选与自动化面试岗位需求分析与人才预测员工培训与发展通过分析员工的工作数据和行为模式,大模型可以帮助企业更准确地评估员工的绩效,并制定合适的激励方案。这有助于激发员工的工作积极性和提高整体绩效。绩效管理与激励方案设计人力资源数据分析与决策支持利用大模型对员工的反馈数据进行分析,企业可以了解员工的需求和期望,及时调整管理策略和改进工作环境。这有助于提高员工的满意度和忠诚度

44、。通过对人力资源数据的深入挖掘和分析,大模型可以为人力资源部门提供有价值的洞察和决策支持。这有助于企业优化人力资源管理流程,提高管理效率。员工满意度调查与改进财务报表分析利用大模型对大量财务数据进行深度挖掘,发现潜在的财务问题、趋势和机会。这有助于企业更好地制定战略决策和优化财务管理。27大模型技术深度赋能保险行业白皮书(2023)在法务领域,大型AI模型可以应用于多个场景,提高工作效率和准确性。以下是一些典型的应用场景:2.2.4法务:分析历史案例、快速合同审查2.2.5经营决策及管理:辅助战略规划及策略优化利用大模型对未来的市场趋势、经济环境和行业动态进行预测分析,为企业的财务规划提供

45、有力支持。财务预测与规划大模型可以自动识别税收法规的变化,为企业提供合规建议。同时,它还可以分析企业的税务结构,帮助企业找到合理的税收优化方案。税务合规与优化通过分析历史市场数据、公司基本面和技术指标,大模型可以为投资者提供个性化的投资建议和资产配置方案。投资组合管理大模型可以自动识别潜在的审计问题,提高审计工作的效率和质量。此外,它还可以协助审计人员进行复杂的数据分析,减轻工作负担。审计自动化大模型可以分析供应链上的各个环节,为企业提供融资建议和风险管理方案。此外,它还可以协助企业优化库存管理,降低运营成本。供应链金融通过分析历史案例、法规和判例,大模型可以为律师提供有关特定法律问题的详细信

47、其知识产权。此外,它还可以协助企业发现潜在的侵权行为和维权途径。知识产权管理大模型可以理解和处理自然语言,从而简化律师在撰写法律文件、起草合同和其他法律文书时的工作流程。法律语言处理舆情监控与声誉风险管理实时监测网络上的舆论动态,分析客户对企业和产品的态度和看法。通过对舆情的监控,企业可以及时发现潜在的声誉风险,采取措施进行危机公关和品牌维护。操作风险管理通过对企业内部流程和数据的监控,大模型可以识别潜在的操作风险,帮助企业改进内部控制和合规管理。例如,模型可以检测到员工违规操作、内部欺诈等风险事件,并提醒企业采取相应措施。供应链风险管理帮助企业评估供应链中的潜在风险,例如供应商的信用风险、物

48、流延误等。通过对这些风险的预测和管理,企业可以确保供应链的稳定运行,降低潜在的损失。销售与营销策略优化通过分析市场数据和消费者行为,大模型可以帮助保险公司制定更有效的销售和营销策略。同时,它还可以协助企业进行客户细分和个性化推荐,提高客户转化率和市场份额。市场分析与趋势预测利用大模型对大量市场数据进行深度挖掘和分析,发现潜在的市场机会和趋势。这有助于企业制定更有针对性的市场营销策略和产品战略。合规与监管监控利用大模型对企业的业务数据和合规要求进行实时监控,保险公司可以确保业务的合规性并及时发现潜在的合规风险。同时,它还可以协助企业应对监管变化,降低合规风险。大模型技术深度赋能保险行业白皮书(2

49、023)在企业风控领域,大型AI模型可以应用于多个场景,帮助企业提高安全性、降低风险。以下是一些典型的应用场景:在经营决策及管理方面,大模型技术可以应用于以下多个场景,辅助战略规划及策略优化:2.2.6风控:识别风险,提升安全性28市场风险管理帮助企业预测市场波动,评估投资组合的风险敞口,从而制定合适的投资策略。此外,大模型还可以用于对冲策略的优化,降低市场风险对企业的影响。战略规划通过对内外部环境的分析,大模型可以帮助企业制定长期战略规划,支持企业在不断变化的市场环境中保持竞争力。29大模型技术深度赋能保险行业白皮书(2023)数字人是一种超越物理界限的虚拟人物,通过计算机手段创造和使用,

50、具有人类的外貌特征、表演能力和交互能力等。其核心价值在于提供拟人化的服务和体验,并呈现出超写实、强交互和工具化的发展趋势。随着虚拟数字人理论和技术的迅速发展,其应用范围不断扩大,在电商直播、短视频等传媒类场景,及医护、政务等服务类场景,还有文旅、教育类场景中渗透速度较快。大模型的加持,将从以下方面显著提升数字人的智能化程度,“让数字人更像人”:(1)更强大的语言处理能力:大模型将使数字人能更好地理解和生成自然语言,使其与人类进行更流畅、更真实的对话。这将有助于提高数字人在客户服务、培训、营销等场景的应用价值。(2)更丰富的情感表达:大模型可以使数字人更准确地识别和模拟人类的情感,从而在与人互动

51、时表现出更丰富的情感表达,提高逼真程度。(3)更强的逻辑推理能力:大模型可以帮助数字人更好地理解复杂情境,进行逻辑推2.3数字人与数字员工:智能化程度提升2.3.1数字人帮助企业识别潜在的法律和监管风险,例如违反法规的行为、政策变动等。通过对这些风险的预测和管理,企业可以确保合规经营,降低潜在的法律诉讼和处罚成本。法律合规与监管风险管理通过分析传感器数据和历史行为模式,大模型可以帮助企业构建智能的入侵检测和报警系统。这有助于企业及时发现并阻止潜在的入侵行为,保障企业资产和人员安全。入侵检测与报警通过分析员工的安全行为数据和行业最佳实践,大模型可以为员工提供个性化的安全培训和意识提升建议。这

52、有助于提高员工的安全意识和技能水平,降低安全事故发生的概率。安全培训与意识提升利用大模型对视频数据进行实时分析,企业可以识别出异常行为和潜在的安全隐患。这有助于企业及时发现并应对安全问题,提高安防效果。视频监控分析与异常检测大模型技术深度赋能保险行业白皮书(2023)理和决策。这将使数字人在解决问题、提供建议等方面更具优势。(4)更高效的学习能力:大模型可以通过大量数据的学习,使数字人具备更强的知识储备和学习能力。这将有助于数字人在各种领域不断进步,适应不断变化的环境。(5)更好的个性化定制:大模型可以根据用户的需求和喜好,为数字人提供更个性化的定制服务。这将使数字人在不同场景下更具吸引力和实

53、用性。(6)更强的跨领域应用能力:大模型可以帮助数字人在不同的领域实现知识和技能的迁移,从而提高其在多个领域的应用价值。总之,大模型将为数字人带来诸多改变和提升,使其在语言处理、情感表达、逻辑推理、学习能力、个性化定制和跨领域应用等方面更加接近人类,提高其逼真度和应用价值。数字员工,又称为数字化劳动力,是一种利用人工智能技术实现的虚拟员工,专注于执行重复性和流程性的工作。麦肯锡在2022年9月发布的数字化劳动力白皮书中,将数字员工定义为“打破人与机器边界,充分激活劳动力潜能的第四种企业用工模式”。通过结合数字员工和传统劳动力,我们可以将人力资源从繁琐的流程性工作中解放出来,专注于更具价值创

54、造性的任务。数字员工的引入可以有效丰富并优化企业的劳动力结构。数字员工可实现企业全景式降本增效:在前台销售端提供卓越的用户体验,提升获客能力;在中后台则能优化运营流程,提高运营协作效率,从而推动业务发展。将大模型技术与数字员工结合,可以实现更加精准、高效的任务处理和决策制定,具体体现在以下几个方面:(1)大模型能够提供更加全面的知识储备和信息分析能力。传统的数字员工往往只能依靠预设的规则和算法进行工作,而大模型则可以通过对海量数据的学习和分析,获取更2.3.2数字员工3031大模型技术深度赋能保险行业白皮书(2023)加深入的领域知识和经验。这使得数字员工在面对复杂问题时能够更加准确地判断和

55、解决,提高工作效率和质量。(2)大模型能够实现更加灵活的任务执行和协同合作。传统的数字员工往往只能按照固定的流程和规则进行工作,而大模型则可以根据实时的需求和情况,自动调整任务执行流程。同时,大模型还能够与其他数字员工进行协同合作,实现信息的共享和交流,提高团队的整体效能。(3)大模型还能够实现更加智能的决策制定和风险评估。传统的数字员工往往只能依靠预设的规则和算法进行决策,而大模型则可以通过对历史数据和实时数据的分析和挖掘,提供更加全面和准确的决策支持。这使得数字员工在面对复杂的决策问题时能够更加明智地做出选择,降低风险和损失。综上所述,大模型能力与数字员工结合,可以进一步提升数字员工的智能

56、化程度。通过提供全面的知识储备和信息分析能力、实现灵活的任务执行和协同合作,以及提供智能的决策制定和风险评估,数字员工能够更好地适应复杂多变的工作环境和需求,为企业带来更高的效益和竞争力。目前已有保险公司进行基于大模型技术的数字员工能力试点,在包括产品定制化、定价动态化、销售场景化、理赔自动化、客服人性化等场景内深度实践,进一步分担真实员工的日常重复性工作。当前行业大模型开放平台架构多以三层结构呈现。(1)底层是“模型即服务”(MaaS:ModelAsAService)封装层,这一层集成了多种模型资源,如ChatGPT、文心一言、开放源代码模型,以及企业专有的垂直领域模型。这些模型通过统

57、一的接口和协议进行封装和集成,为上层应用提供强大的内容生成和分析处理能力。(2)中间层是大模型的“应用框架层”,这一层为大模型的应用和服务提供了一个全面的支撑框架。该框架具备高度的安全性和合规性,提供了一系列的功能,如脱敏处理、审计跟踪、计量计费、模型适配、API鉴权等。这些功能确保了大模型在各种场景下的可靠应用和服务,同时为大模型的推广和应用提供了标准化的规范和指导。(3)最上层是大模型的“应用场景层”,这一层通过底层模型的支撑,实现了多种实际场景中的应用和落地。例如,智能核保、理赔处理、舆情分析、智能客服、智能化质检等多种3.1大模型开放平台架构32大模型技术深度赋能保险行业白皮书(20

58、23)3.大模型开放平台建设打造可信大模型底座大模型开放平台负责构建企业的大模型生产力,为企业的各项业务应用提供支持,是企业实现大模型技术全面落地应用的必备基础设施。大模型开放平台支持大模型应用的快速开发,同时通过算法库、模型库、服务库、插件库、数据和模板库等模块不断沉淀、积累和共享可复用的能力,并将能力集成应用到开发运维过程中。大模型开放平台的建设,可以快速响应前端的业务需求,让用户更快、更高效地落地大模型应用,为业务赋能;能避免烟囱式的系统建设模式,降低大模型应用系统建设以及系统间交互成本;能实现数据共享、计算共享、模型共享,更好地降低应用成本;同时实现持续的技术沉淀,形成企业的核心资产

59、,推动企业业务创新。大模型技术深度赋能保险行业白皮书(2023)场景应用。这些应用不仅提高了企业运营效率和服务质量,也为广大用户提供了更高效、精准、便捷的服务体验。大模型开放平台可以允许机构用户,在大模型内嵌入行业专业领域知识库,实现在保险垂直领域应用的快速适配;此外,也支持把企业内部应用工具包装成大模型插件,让大模型更加贴近业务应用场景。无论是定价动态化、销售场景化、理赔自动化,还是客服人性化等场景,大模型技术都能深度实践,并展现出强大的应用潜力。阳光保险集团率先打造的正言大模型开放平台,旨在构筑保险行业大模型的坚实底座,全面拓展科技赋能的边界,以引领保险业务应用的未来发展。该平台以阳光GP

60、T模型为核心,依托专有数据与计算平台,为整个集团提供统一、标准化、高效率的大模型能力支持。通过专业大模型的构建,阳光保险对公司旗下的销售、服务、管理三大机器人产品进行了全面的智能化升级。这一升级将引领阳光保险各业务部门深度挖掘和应用智能科技,帮助业务人员真正理解智能、接纳智能,进而引领业务变革,实现从科技赋能到科技引领的全新跨越。正言大模型开放平台主要由平台工具层、阳光正言GPT层、业务应用层构成,在阳光内部提供企业级的MaaS能力,如下图所示。3334大模型技术深度赋能保险行业白皮书(2023)平台工具层由大模型研发工具、Prompt工厂及插件统一集市构成。其中大模型研发工具,实现大模型的自

61、动训练、自动评测及模型管理;Prompt工厂实现prompt的管理及优化,充分挖掘大模型在特定领域的能力;统一插件集市建设,实现插件的动态开发与管理。阳光正言GPT层通过智能路由,实现外部大模型及自研大模型的动态调度、大模型择优与融合;再利用智能审核模型,对所有调用大模型的数据进行监控和检视,在确保数据和模型的使用安全合规的基础上,提供保险专业能力、通用能力及个性化能力。基于阳光正言GPT层提供的三大能力,支撑业务应用层实现“1+3+N”应用,其中:“1”是指在办公场景赋能全员办公,支撑文本创作、文本摘要、图像生成等;“3”是指突破销售、管理、服务三大机器人;“N”是指拓展更多的业务应用场景,

62、例如实现精准产品设计及定价、数据报表自动化生成等。图5正言大模型开放平台系统架构图如何将垂直领域的行业专有知识,嫁接到具备强大通用能力的大模型上,同时不损失大模型的通用能力,是训练垂直领域大模型要解决的核心技术问题。训练垂直领域的大模型的方法多种多样,目前主要包括如下三类方案:(1)从预训练开始定制模型:先基于海量通用数据+大量垂直领域数据进行预训练,得到预训练模型;再利用少量高质量垂直领域数据对预训练模型进行指令微调;(2)参数微调:在通用大模型基础上,基于少量高质量垂直领域数据进行参数微调,得到微调后的垂直领域大模型;(3)上下文学习:在通用大模型基础上,基于包含垂直领域知识的提示词pr

63、ompt进行上下文学习(In-ContextLearning),但不对模型参数进行修改更新。3.2.1训练方法大模型技术深度赋能保险行业白皮书(2023)353.2垂直领域大模型:更懂保险的大模型通用大模型,如ChatGPT、文心一言、LLaMA、BLOOM、ChatGLM和通义千问等,已展现出强大的通用能力,涵盖了自然语言生成、阅读理解、机器翻译和情感分析等。然而,尽管这些通用模型具备强大的通用能力,但保险行业作为一个高度专业化的领域,通用模型往往无法完全满足其专业需求。因此,针对保险行业专门研发垂直领域的大模型,可以弥补通用大语言模型在保险领域应用中的不足,是大模型落地应用的关键环节

64、。以阳光GPT为例,其模型设计理念专注于解决保险领域的问题,因此相较于通用模型,它在保险领域表现出更高的专业性和实用性,成为了一款更懂保险的大模型。此类专门针对保险行业的大模型的研发和应用,将推动保险行业的创新与发展,提高服务质量和效率,为客户提供更优质的保险产品和服务。36大模型技术深度赋能保险行业白皮书(2023)总的来说,上述三类方案,从(1)到(3)的实现难度、算力需求、语料需求及训练时长依次递减,而得到的模型泛化及推理能力也依次递减。具体采用哪类方案训练自身垂直领域的大模型,企业可根据自己的需求及资源情况进行选择。以阳光GPT为例,其训练主要运用了参数高效微调的方法,这也是许多已开源

67、同时也充分考虑了实际业务场景的需求,从而实现了更为出色的性能表现和实用性。这为我们在保险领域的业务应用提供了强有力的支持与保障。3.2.2基座模型选择构建保险垂直领域的大模型,离不开大量高质量的保险领域数据作为训练基础。以阳光GPT为例,为了将保险能力融入通用模型中,其训练过程中采用了以下几类数据:(1)保险领域网站:通过爬取保险领域网站来获取保险百科类知识,保险类的网站有保险查查、招商信诺、慧择、深蓝保、奶爸保等。(2)保险领域书籍:保险领域书籍的资料相对较多,包含投资理财概论、人身险销售从业人员参考用书调整内容、人身保险新型产品基础知识及实务等等。虽然书籍的知识形式不适合做有监督的微

69、服务考试等。(4)通用语料库:为了缓解通用领域灾难性知识遗忘的问题,还需要准备大量的通用语料,如中文语料库WuDaoCorpora,并与专业语料形成一定的配比,来帮助模型学习通用领域的知识。训练保险领域的垂直大模型主要面临以下挑战:(1)数据收集与处理:数据比模型重要,在业内已经达成共识。保险行业的数据往往比较分散、质量参差不齐,而且涉及到敏感的个人和财务信息,如何有效、安全地收集和处理这些数据是一个难题。(2)灾难性遗忘问题:参数高效微调方法可能导致大模型面临灾难性遗忘的问题,其特征为在适应保险领域时失去了先前获得的通用知识。在训练时需要慎重考虑保险领域和通用领域的训练数据配比,让模型既能适

70、应保险领域的场景,又能减轻通用领域知识的遗忘问题。(3)大模型幻觉:大模型在生成文本时,可能出现与事实不符、与预期不符或与用户意图不符的情况。幻觉的产生主要与大模型的训练数据、模型架构、训练方法和上下文等因素有关。(4)模型的可解释性和可靠性:保险行业的决策往往需要高度的可解释性和可靠性,如何训练出能够提供可解释、可靠的大模型是一个挑战。3.2.4挑战及应对插件技术可以方便地将不同领域的知识和数据集成到大模型中,从而提高模型的泛化能力和性能、丰富大模型应用的功能和场景。此外,也可以通过插件实现与公司内部业务系统的链接,实现大模型与业务流程的衔接。插件是一种可扩展的代码模块,可以与已有的代码系

71、统进行交互,提供一些额外的功能或服务。插件的运行方式通常是使用同一语言或API进行调用,从而实现特定功能的增强。以阳光正言大模型开放平台为例,业务方可以选择平台提供的公共插件工具,如邮件发送插件、wiki百科咨询插件、地图信息检索插件等;可以向正言平台注册自己业务专属的第三方插件(自己开发,平台注册)从而形成专属于自身业务的聊天代理服务agent。通3.3插件集市,实现大模型与外部系统链接大模型技术深度赋能保险行业白皮书(2023)39(5)模型的实时性与性能:保险行业的业务往往需要快速的响应和高效的性能,如何训练出能够实时处理、快速响应的大模型是一个需要考虑的问题。(6)数据安全与隐私保护

72、:保险行业的数据往往涉及到个人隐私和财务敏感信息,如何在训练大模型的过程中保障数据的安全和隐私。(7)模型的持续优化与迭代:保险行业的业务在不断发展和变化,如何持续优化和迭代大模型以适应业务的变化也是一个挑战。针对上述挑战,在垂直领域大模型训练过程中,可通过数据标注、数据筛选等方法保证垂直领域数据的质量;根据实际应用场景确定通用数据和领域数据的配比,避免大模型通用能力的损失;选择合适的模型微调技术,确保大模型的应用效果;引入人类反馈机制以减少幻觉的产生;采用本地部署的大模型,并采取相应的安全措施,如数据加密和访问控制等,避免泄露隐私及敏感信息。大模型开放平台通常提供一系列应用工具和接口,为开发

73、人员提供了一个集成环境,可以大大简化大模型的构建和训练过程。大模型研发工具通常支持如下功能:3.4大模型研发工具,提升模型研发效率40大模型技术深度赋能保险行业白皮书(2023)过代理agent与正言大模型交互,代理agent可根据聊天内容的意图判断是否需要调用插件、调用哪些插件及调用顺序,最终将插件调用的结果返回给用户。(1)定义本地插件通过采用类方法对插件进行封装创建本地插件,填写准确的插件描述与名称,例如:邮件插件-当你需要发送邮件时。可以使用这个工具用来发送邮件。同时在类方法中实现创建的插件的功能。最后将代码存放到插件集市服务中。(2)定义外部自定义插件业务方在自己的业务系统中定义实

77、开放平台通常可提供多种大模型供按需选择,包括外部商业模型、本地部署的3.5智能路由和审核,实现大模型动态调度和内容安全大模型技术深度赋能保险行业白皮书(2023)4142大模型技术深度赋能保险行业白皮书(2023)开源模型、基于领域数据训练得到的自研模型等。平台通过灵活的模型选择机制-智能路由,实现不同大模型之间的无缝切换。智能路由能够对模型进行评估,以找到处理当前请求最适合的模型,从而提供更优质的服务。利用智能路由技术,可以实现大模型的统一服务和动态调度,从而提升服务效率和质量。(1)路由分级智能路由分为三个层级:接口级、系统级和全局级,并约定了优先级顺序。接口级具有最高的优先级,系统级次

79、,避免虚假或误导性的信息进入模型。对大模型的输出内容进行审查,确保模型预测结果的合理性、公正性、符合法规和道德规范等。随着大模型技术在保险业的广泛应用,数据安全、隐私保护、合规性以及网络安全等3.6大模型应用安全与合规大模型技术深度赋能保险行业白皮书(2023)43议题逐渐浮现,这些因素已成为保险业数字化进程中的关键挑战。保障大模型应用过程中的安全性需要从以下几个方面来考虑:(1)数据安全:大模型的训练和应用都需要大量的数据支持。为了保障安全性,我们需要采取一些措施,如数据匿名化、隐私保护、数据加密等来防止数据泄露和滥用。针对数据隐私和合规性,应当遵循最小化数据原则,仅收集和处理执行特定任务

85、代表性的是百度和阿里。这类公司推出了一系列的云计算服务,使用户可以方便、低成本地创建自己的大模型,部署成大模型云服务。第二种是数字人产品,其中比较有代表性的包括百度、阿里及科大讯飞等。这类公司不仅推出了更逼真,更惟妙惟肖的数字人产品,还把单个数字人的创建门槛降低到只需录制一段几分钟的视频和音频,创建成本也从一年前的几十万元降低到了几千元。第三种是创新大模型产品,推出大模型问答式文库应用,采用独特的“大模型+运营”的方案,为企业建立私有知识库,应用于内部和外部用户的信息检索场景,满足企业用户对内容可信、预期可控、知错能改的高层次要求。第四种是在传统软件上附加大模型技术,提供大模型驱动的Copil

86、ot。如微软在Windows11中加入了名为Copilot的AI助手,Copilot可以接受用户的自然语言指令并自动执行软件功能,提升用户工作和学习的效率。根据信息技术研究分析公司Gartner预测,到2025年,AIGC人工智能的全球市场规模将超过1350亿美元,其中银行、金融服务和保险将占该市场的25%。目前来看,国内保险行业还在处于摸索AIGC落地的初级阶段,海外一些保险公司已经开始探索将AIGC嵌入到承保、理赔、审核等多个保险业务流程中。此外AI+RPA的技术融合已经使数字人具备数据决策能力,这意味着虚拟数字人在未来有为保险业重构行业价值链的能力,同时由AI+RPA技术融合而成的”数

87、字人“正逐渐被国内外的保险行业所接受。4.积极探索落地大模型价值全面初现46大模型技术深度赋能保险行业白皮书(2023)阳光保险集团于2023年初启动了“阳光正言GPT大模型战略工程”,积极布局大模型建设、加强内外部交流,并参与行业标准制定。作为“核心编写单位”,阳光保险与百度、华为、腾讯等公司共同参与金融大模型行业标准面向行业的大规模预训练模型技术和应用评估方法第1部分:金融大模型的编制。该标准是金融领域的首个大模型标准,并于2023年9月18日在以“大模型高质量发展”为主题的2023年可信AI大会暨人工智能产业发展大会上正式发布。该标准从金融场景适配性、金融领域AI能力支持度以及应用

88、成熟度三个维度进行全面评估,同时考虑了合规安全性、可追溯性以及部署等多个方面。这一标准为科学评价金融大模型技术能力和应用效能提供了有力的参考依据。阳光保险大力建设了以GPT大模型为核心技术能力的阳光正言大模型开放平台,一方面与多家外部大模型技术进行链接;另一方面在开源大模型私有化部署的基础上进行二次开发,注入阳光的知识和数据,构建GPT技术底座,建立保险专业垂直领域能力,实现集团、产寿各条线的全应用覆盖,引领公司智能化升级。通过阳光正言大模型开放平台,阳光保险实现了阳光GPT技术关键能力输出,包括专业能力、通用能力和个性化能力。这一平台为公司的智能化升级提供了强大的支持。利用大模型技术,阳光保

89、险构建了车险全线上销售机器人,通过官网、官微、APP、95510四种渠道触达客户。机器人通过线上渠道与客户之间建立纽带,并实现了更深入的客户洞察。同时,基于交互内容的过程分析,机器人全方位参与售前、售中和售后各个环节,实现“对话即销售”的理念革新。目前,阳光保险利用大模型技术重构了信息抽取、意图识别模块及部分改造智能问答的召回阶段,整理出400+常见问题、17个槽位及26个业务意4.1国内险企躬身入局,初步探索AIGC应用落地4.1.1阳光保险:正言大模型开放平台赋能保险及办公全业务流程大模型技术深度赋能保险行业白皮书(2023)4748大模型技术深度赋能保险行业白皮书(2023)大模型技

90、术应用到智能客服机器人项目,大大改变了传统的客户服务模式,为客户提供了更为便捷、高效、智能的服务体验。要实现与客户的真正开放式对话交流,单纯依赖传统算法是远远不够的。阳光设计了基于大模型的人机交互方式,以实现更为准确的问题意图识别和语言交互场景。这种结合上下文的交互方式允许机器人在与客户沟通时,能够理解并回应客户的各种口语化表达和复杂意图,从而显著提高了回答的准确性。结合语音导航、文本机器人、数字虚拟人等触客终端,形成了一套完整的智能化客服系统。在此基础上,结合业务场景,项目组进一步发挥大语言模型能力特点,将现有客服团队历年积累的客服知识和产寿业务资料进行深入整理,结合FAQ、知识图谱和大语言

91、模型的语句、意图提炼能力,形成了针对投保、保全、理赔、核保和条款等不同业务场景的意图识别和知识储备。这图,共计标注2万余条数据。通过阳光GPT对信息抽取、意图识别和语义相似度识别三项语义理解能力进行升级,相较于传统的预训练语言模型Bert,信息抽取任务准确率提升15%,意图识别任务准确率提升5%。基于信息抽取与意图识别方面的改进,智能问答任务解答率提升8.7%。图7车险全线上销售机器人产品架构种方法显著提高了回答的正确率,无论客户提出何种问题,客服机器人都能迅速地根据语义分析在不同层级的知识中进行分类提取并组织话术,为客户提供最合适的答案。大模型技术在人伤闪赔机器人的应用,提高了人伤案件快速

92、结案率与理赔效率,进而减少因伤者就诊、住院治疗或索赔周期延长导致索赔预期增加带来的赔付成本上升;通过人伤闪赔机器人准确识别人伤伤情诊断,同时遵循赔偿标准,智能化出具标准赔偿建议,减少查勘员因技能不足、伤情误判带来的赔付渗漏。目前行业尚无此类的科技产品,该产品可以让客户享受有温度的保险服务,同时带来行业巨大变革,是所有保险人挤压理赔管理和理赔技术水分的必然选择,也是未来保险数智化的必然趋势。在个性化能力建设上,基于阳光GPT率先打造阳光文化金水杉讲师及“阳光升”金牌销售员两个角色,支持两个具有阳光特色的场景问答能力。其中“阳光升”金牌销售员通过打通常见问题解答、文档知识问答能力链路,形成了一套较

94、图生图、图生文等多模态功能,初步实现了自然语言与应用系统的联动,为公司办公场景化应用提供支撑。(a)预制或自定义各类人设,实现智能交互咨询辅助通用问答能力建设上,利用平台的智能路由,实现自研大模型与外部大模型的动态调度,借助提示词工程建立各类专业领域对话人设,为用户提供问答咨询、文案撰写及润色等多种办公文案类辅助功能。可根据应用场景选择不同的人设,也可以自定义专属人设。例如选定心理咨询师的角色,可帮助员工识别解决情绪问题,分析员工情绪问题的起源和根源,协调员工处理人际关系并使员工间密切合作,如下图所示。图9预制或自定义各类人设,支撑多类办公文案场景大模型技术深度赋能保险行业白皮书(2023)

95、51(b)多模态图文小能手,促进UI设计类工作提质增效通过整合封装多模态大模型并在此基础上进行二次开发,构建文生图、图生图等能力,提高公司内部的海报、宣传图等UI设计类工作的效率。基于多模态能力,支撑了公司端午节营销海报的自动生成,如下图所示。在节日当天,寿险公司代理人超过1.3万人次点击查看,生成的海报转发和下载超过2500次。(c)智能文本与数据分析,辅助经营管理与决策分析通过将阳光正言大模型开放平台与阳光驾驶舱报表系统融合,在数据分析方面,可将数据分析模型与建表服务进行串联,完成数据自动提取、数据间的关联分析并根据自然语言的报表制作需求,快速生成报表,如下图所示。图10端午节营销海报生

96、成52大模型技术深度赋能保险行业白皮书(2023)(d)多种模型自助切换,支持答案对比与择优基于外部大模型较强的通用能力,同时考虑到阳光自研大模型在特定场景的个性化语言、语境、领域知识等方面的适应能力,平台为用户提供多种模型的切换功能,方便用户快速找到更优质的答案,如下图所示。图11基于自然语言,实现报表自动生成图12不同模型自助切换,提供更优质的答案中国人保高度重视大模型技术带来的机遇和挑战,积极布局大模型建设。通过自建人工智能算法团队、积极推进内外部生态合作,中国人保充分利用人保海量语料、数据及行业知识的优势,打造了自主可控的人保大模型,并在代理人赋能、智能客服等场景试点应用,以Maa

97、S方式为集团各公司提供基于大模型的智能产品和技术服务,并于2023年11月6日在人保集团科技发布会上正式发布。4.1.2中国人保:打造并发布人保大模型,多场景应用落地(e)通用代码能力生成,赋能企业研发运维在通用代码生成方面,融入阳光编程规范,提高代码质量,同时通过构建VSCode插件,扩大应用范围。此外,基于前期验证和测试多个应用场景,研发基于IDEA的常青藤辅助编程插件,完成了代码生成模型及IDE插件初版建设并在多支开发团队进行试点,在代码补全、代码解释、性能检查等场景助力研发团队生产效率的提升。全公司内部已有近半数开发人员将平台提供的通用代码能力辅助研发。大模型技术深度赋能保险行业白

98、皮书(2023)53图13构建集成开发工具常青藤辅助编程插件,实现代码辅助中国人保与认知智能国家重点实验室及科大讯飞合作研发了人保首个专属问答大模型,该模型在通用问答能力的基础上,提升了多轮口语化复杂意图理解能力、情感理解与共情能力,新增了敏感问答拒识能力,并针对保险具体应用场景,实现了条款咨询问答能力、业务逻辑推理能力和多文档多知识点融合能力的全面突破。人保专属问答大模型已通过“人保智友”产品在代理人赋能、智能客服等场景试点应用,借助大模型的语义理解、搜索增强等功能,提升知识获取效率,降低企业运营成本。同时,中国人保还通过自研与合作双轨并行,构建了以深度理解保险行业的专属通用大模型为底座、

99、面向垂直业务领域的自研场景大模型为主体、外部大模型能力为辅助的人保大模型生态,配套建设了人保prompt工厂、博文智库、智选路由、信息安全助手等组件,为自研的文曲星平台、AI智能陪练等多款智能化产品提供一站式MaaS服务,已在集团各公司百余个场景中应用落地,全方面支持包括保险、投资、办公等领域的集团内各类工作任务,带来更高效、更智能的业务处理能力,全面提升工作人员效率和客户体验。54大模型技术深度赋能保险行业白皮书(2023)图14人保大模型产品规划大模型技术深度赋能保险行业白皮书(2023)55(1)智能营销:打造智能代理人助手,借助AI生成图文的能力,支持代理人针对特定节日、特定产品、特

101、服务等,陪伴用户的保险全生命周期。(5)智能编程:打造智能编程助手,借助AI生成能力,在代码输入过程中预测并提供下一段代码片段;同时能够识别代码中的潜在错误并提出适当的修复建议,从而显著提升编程效率。人保大模型的构建将重塑人工智能技术在中国人保现有的应用模式,进一步提升其智能化水平,促进降本增效,为客户提供更加智能、便捷、可靠的金融服务,助力人保高质量发展。4.1.3平安:推出数字人产品、建立精准信用评级体系平安人寿推出了基于大模型的数字人产品,主要用途在于协助代理人更有效地与客户沟通。这款产品对于新入行的代理人来说,无疑是一大福音。它不仅能在交流中给予指导,帮助代理人更好地理解客户需求,同

102、时还能收集并整理客户信息,根据客户需求提供56精准的产品推荐。同时,平安银行也已经开始利用AIGC技术对客户的个人信息、历史借款记录以及消费行为等数据进行深度分析。通过这种方式,平安银行成功建立了一套精细的信用评级体系。有了这个体系作为基础,他们可以为不同信用等级、借款需求和偏好的客户,量身定制出个性化的借款产品和服务。这种个性化的服务包括了贷款额度、借款期限、利率等方面的差异化设置,旨在提高客户的满意度和忠诚度。平安健康打造了专门为医生服务的“ChatGPT”AskBob智能医生,基于4000万医学文献、20万药品说明书、2万临床指南等中英文医疗知识图谱以及融合深度学习模型,可为医生提供个体

103、化精准诊疗推荐和辅助决策。截至2023年2月,AskBob服务于140多万名医生,覆盖全国范围4.6万家医疗机构,每天提供的诊疗辅助决策次数达27万次,尤其在医疗资源有限的地方帮助提升医疗服务。平安不仅能够运用科技助力自身金融业务提质增效,并且具备了输出能力。平安旗下金融壹账通作为国内金融科技领域的AI先行探索者,已率先布局大模型和生成式人工智能(AIGC),并在银行、保险、投资等金融垂直领域落地应用。其打造的“加马智慧语音解决方案”,基于平安集团30多年的金融业务经验,专注深耕金融行业,依托支持信创适配的机器人平台,创新地将“产品”与“业务”相结合,针对智能风控、智能营销、智能客服多业务多场

104、景打造了300+语音机器人流程、3000+文本FAQ库、200+质检模型和60+智能辅助模板,提供AI场景构建、AI运营团队建设及培养咨询和AI场景效果提升服务,实现金融壹账通提前布局人工智能赛道的关键一步。大模型技术深度赋能保险行业白皮书(2023)4.1.4太保集团:数字员工助力审计监督提升太保集团积极推进基于大模型的数字员工建设,希望利用大模型的特点和优势,带来大模型技术深度赋能保险行业白皮书(2023)57太保集团积极推进基于大模型的数字员工建设,希望利用大模型的特点和优势,带来传统用工模式的变革。数字员工提供通用的自然语言交互入口,能根据用户指令,解析得到用户意图,自主进行任务规划

105、并完成任务执行,为用户提供多样化的服务。数字员工实现了对专业工种的建模,赋予了数字员工思维能力、行动能力以及职业能力,并做到与真实业务人员对齐,解决实际场景任务的同时,有效填补人力空缺,提升业务处理效率,优化公司整体营运和决策效率,助力太保集团数字化转型。目前太保数字员工已在集团审计中心进行能力试点,构建了审计检查、公文质检、咨讯问答等多名审计数字员工,为集团审计带来以下价值:一是实现精准化的审计监督,助力防范化解金融风险。“审计数字员工”将突破传统审计局限,精准打击保险违规违法行为,帮助公司挽回经济损失,有效遏制虚假理赔恶意欺诈风险,助力守住企业风险底线,构建诚信社会环境,促进行业健康稳定发

106、展。根据国际保险监管者协会测算,全球每年约有20%-30%的保险赔款涉嫌欺诈,2022年银保监会公布中国保险业总赔付1.5万亿元。近年来,太保审计应用数据分析方法,成功与一二道防线联合查处虚假案件5000余件,实现追回或减损金额近3亿元。数字员工的建成将在此基础上,进一步提升审计质效、减少企业经济损失,为净化保险市场环境发挥重要作用。二是有效填补审计人力不足,满足行业监管要求。根据银保监会保险公司内部审计指引,审计人员配置应不低于总员工数5。面对企业快速发展、规模不断扩大、审计人手存在不足的情况,“审计数字员工”将有效填补审计人力缺口,改变传统人海战术式的队伍发展模式,构建“人防+技防”、“

107、人力技能+人工智能”相结合的数字化审计监督力量,预计提升审计人力效能约35%。根据国家审计署不完全统计,全国内部审计从业人数约20余万人,项目建成将对行业发展产生重要影响。三是构建智慧审计模式,为行业数字化转型提供示范。“审计数字员工”将充分发挥技术优势,推动审计方式从传统人工排查向机器自动核查、从抽样审计向全量式覆盖、从事后审计向事中事前审计的转变,实现审计模式、流程和形态的革命性改变,大幅度提高审计效能,为内审行业转型发展提供可借鉴的示范模式。四是发挥智能技术引领,实现人工智能在审计领域全面化应用的率先突破。“审计数字员工”的建成,将实现智能化技术在审计全业务流程以及主要风险领域的全面化应

108、用突破,改变以往智能化技术着重应用于业务前端的营销获客,而在审计监督领域应用仍然是盲点的情况。通过数字员工在审计场景的建设与落地,进一步明确了数字员工内涵。同时,通过保险行业风险全面梳理,形成保险行业审计可借鉴的风险图谱;再有,通过对被审计单位提供信息的标准化设计,拓展数字审计覆盖领域,形成行业可复制的数字审计方法体系;最后,通过技能整合,形成数字员工建设的样板,形成审计领域可推广的经验。此外,中国太保产险联合百度打造的“全智能、无人工”车辆定损工具“太AI”,定损、理赔判定依据复杂、专业性高,尤其是人身险在涉及劳动损失给付等方面的程序时,往往涉及与被保险人的交涉沟通。截至2021年11月,已

109、适用2.3万个车型,覆盖97%的乘用车品牌,部件识别准确率超过98%,损伤识别准确率超过90%。未来,太保集团将围绕大模型数字员工,稳定持续地优化金融保险领域数值能力水平,促进保险业务全流程智能优化和效率提升,搭建“保险业务+科技创新”的高质量运行模式,为保险行业数字化转型提供新范式。58大模型技术深度赋能保险行业白皮书(2023)4.1.5泰康:积极构建生态,打造大模型原生应用近年来,泰康创新保险支付+医养服务商业模式,积极拥抱数字化升级浪潮,探索行业大模型技术深度赋能保险行业白皮书(2023)59数智化转型的经验和范本。在智慧保险领域,泰康搭建了行业内首个支持核保理赔场景下全量数据采集的

111、模型侧依托头部企业的通用大模型以及开源大模型,结合泰康在保险、医养行业的特有知识,利用大模型生态企业在AI算法和大算力上的经验优势,联合建设面向保险行业、医养行业的行业大模型以及细分领域的垂类模型。平台侧采用与头部企业合作和自研相结合的方式,建立大模型应用开发平台,提供大模型能力至应用之间所需的管理控制、模型选择、提示工程、知识管理等工具,为AI原生应用的高效开发与管理提供平台支持。应用侧聚焦核心场景,打造绩优代理人数字助理产品及老年生命链大模型产品,深入代理人智能培训、代理人销售辅助、齿科、康复医院、长寿社区等场景,利用新一代AI能力进一步降本增效,为客户、销售队伍、医养队伍等提供更有温度、

112、更规范、更智能、更实惠的服务。4.1.6众安保险:将AIGC置入科技产品,打造系统应用全新体验众安科技自成立以来长期致力于自身科技能力的对外输出,形成了一系列极富竞争力的产品:智能营销平台、保险核心业务系统、经代信息化系统、DevCube研发运维一体化4.2国外险企积极转型,营销承保服务业务全覆盖4.2.1PaladinGroup:承保工具UnderwriteGPT2023年2月1日,保险科技数字经纪公司PaladinGroup推出了世界上第一个生成式人工智能承保工具UnderwriteGPT,同时也是目前市场上较为先进和高效的核保解决方案。简单来讲就是基于大语言模型生成的AI,帮助

113、承保和风险管理变得更快、更高效、更准确。UnderwriteGPT最大的优势是不断生成新的数据和见解,从而简化承保流程并改进风60大模型技术深度赋能保险行业白皮书(2023)平台、数据产品等。针对科技产品项目实施过程长期存在内容的生成成本高、产品学习上手困难、业务指导能力弱等问题,众安保险基于AIGC类大模型的能力,结合保险业务经验,自主研发了AIGC中台-灵犀,并支持把企业内部应用工具包装成大模型插件,全面提升了产品易用性,实现了内容运营平台、经营分析平台、智能坐席助手等多项工具的迭代升级。其中众安科技智能营销平台包括营销活动创建、营销人群圈选、营销内容触达、自动化运营策略配置、运营分析等模

115、接入后,业务人员只需要输入需求,系统即可自动化配置实现,提高效率。大模型技术深度赋能保险行业白皮书(2023)614.2.2CorvusInsurance:利用CorvusRiskNavigator平台实现核保CorvusInsurance是一家人工智能驱动的网络风险平台。近日,CorvusInsurance推出了人工智能CorvusRiskNavigator平台,以提高保险公司在工作流程中常规手动任务的自动化程度,包括索赔、数据整理、实时核保等,这些功能进一步减少了保险公司的工作量,同时提高了报价效率。具体来看,CorvusRiskNavigator平台使用了大模型和自

120、案,因此Simplifai致力于客户的隐私保护,维护对数据的严格控制和监管。(3)无代码维护:insuranceGPT的无代码模型允许保险公司无缝集成到平台,无需技术专业知识,提高了使用效率。Simplifai也表明,insuranceGPT平台在未来有可能从根本上改变保险公司的数据处理和索赔流程。大模型技术深度赋能保险行业白皮书(2023)力。虚拟数字员工已经为苏黎世处理了300万笔交易,让苏黎世的一线人力资源员工得以专注于提供卓越的客户服务。大模型技术深度赋能保险行业白皮书(2023)4.2.5印度Plum:PolicyGPT聊天机器人,进行客户联系服务印度的Plum公司采用Open

121、AI的GPT-3架构创建了一款名为PolicyGPT的聊天机器人,可为用户提供他们从Plum购买的健康保险政策的信息。在PolicyGPT的帮助下,用户无需翻阅保单文件即可找到答案。PolicyGPT将以用户习惯的简单对话形式,让用户更轻松地了解保单涵盖的内容及未涵盖的内容。除了提供有关保单的信息外,PolicyGPT还可提供定位最近的网络医院、获得支持等功能。4.2.6Helvetia:利用Clara推进客户服务瑞士保险公司Helvetia正在测试利用ChatGPT推进客户服务。该公司声称是世界上第一家推出基于ChatGPT技术直接进行客户联系服务的上市保险公司,该服务使用人工智能来回答客

122、户关于保险和养老金的问题。该保险公司目前正在通过其聊天机器人Clara进行现场实验,用户可以通过它获得有关保险、养老金和房屋所有权的答案。该软件使用来自HelvetiaSwitzerland的网页内容,例如产品页面和信息指南。当前,新的聊天机器人可供任何人试用。4.2.7TokioMarine&NichidoFireInsurance:撰写答案草稿这家日本公司借助ChatGPT平台打造了人工智能系统,以公司内部累积的数据为基础,帮助保单持有人和保险代理人解答关于保险范围和流程的问题。该系统能自动生成答案草稿,但并不直接提供给保单持有人,而是为人类工作人员提供指引,帮助他们更好地回答查询

125、1日,钉钉接入阿里通义千问大模型,用户输入一个“/”就能调动10余种高能AI能力,包括自动生成群聊摘要、辅助内容创作、总结会议纪要、草图变小程序等,为2300万企业提供智能转型抓手;4月17日,百度官微宣布文心一言大模型在百度内部全面应用在智大模型技术深度赋能保险行业白皮书(2023)64大模型技术深度赋能保险行业白皮书(2023)65能工作平台“如流”上,助员工在日常工作中的思路构建、协作沟通、方案策划、代码编写等方面提升效率;同日,金山办公正式推出具备大语言模型能力的生成式AI应用“WPSAI”,包括文本生成、多轮对话、润色改写等功能,计划嵌入金山办公全线产品。在国内,智能数字人已成为众

126、多上市公司和创企扎堆进入的领域。如国内AI股上市天娱数科的虚拟数字人已经接入ChatGPT等模型;虚拟技术提供商世优科技目前已将ChatGPT技术接入数字人产品当中;智能内容生成平台来画也在3月底正式接入ChatGPT,短短几十秒就能生成一篇高质量视频文案,并推出数字IP+直播模式。大模型技术深度赋能保险行业白皮书(2023)5.挑战与机遇并存积极布局加速赋能5.1大模型能力持续升级,应用前景可期随着人工智能技术的不断发展,大模型的应用前景越来越受到重视。海外、全球范围内,越来越多的企业和机构开始加速升级和实践大模型技术,以期实现更高效、智能的处理能力。国外谷歌的LaMDA大模型、Open

127、AI的GPT大模型等全球性大模型在语言理解和生成方面取得了显著进展,推动了聊天机器人、语音助手等应用的普及。国内科技、互联网巨头纷纷布局,百度的文心一言、阿里的通义千问大模型、腾讯的混元大模型、智谱AI的ChatGLM、百川智能的Baichuan、科大讯飞的星火认知大模型、商汤科技的日日新大模型等百花齐放。随着计算能力的提升和数据量的增加,大模型的技术发展和应用前景非常广阔。(1)更大的模型:随着硬件和软件技术的不断进步,我们可以预见到未来会出现更大、更复杂的大模型。这些模型将能够处理更复杂的任务,如多模态学习、跨语言学习等。随着大模型时代的到来,各行各业已经步入了全新的发展空间,商业机会和创

128、新业务模式也得到了极大的拓展。具体来说,这包括业务创新能力的提升、高效运营和智能化决策的实现、产品及服务的升级、跨界合作与业务范围的拓展以及基于数据驱动的管理决策等各个层面。保险领域,作为科技创新的沃土,如何把握住这些发展机遇并充分释放大模型的潜能,已成为保险科技团队面临的重要挑战。为了应对这一挑战,我们必须持续探索和实践,以期在保险科技领域取得更为显著的成果。66大模型技术深度赋能保险行业白皮书(2023)(2)更智能的AIAgent:大模型是AIAgent的核心大脑和智慧源泉。在指令理解、知识学习、规划、推理和泛化等方面,它都表现出了强大的能力,且能与人类进行友好的自然语言交互,是AI

129、Agent“认知飞轮”中进行“认知”和“决策”过程的主体。日益强大的大模型,赋予了AIAgent深度理解各种任务的能力,使得AIAgent更接近于实现通用人工智能(AGI)的目标。有了大模型的加持,AIAgent能够更好地感知和理解环境、更有效地进行学习和决策、更精准地满足人类的需求。(3)模型压缩:大模型的训练和推理需要大量的计算资源,这限制了其在实际应用中的普及。因此,模型压缩技术将成为大模型发展的重要方向。通过模型剪枝、量化、知识蒸馏等方法,我们可以在保持模型性能的同时,大幅降低模型的计算资源需求。(4)模型泛化:大模型在训练数据上的表现可能非常出色,但在实际应用中可能存在过拟合

130、的问题。为了解决这个问题,未来的大模型将更加注重泛化能力,即在新的、未见过的数据上表现良好。这可能需要采用更多的数据增强方法、对抗训练技术等。(5)边缘计算:随着物联网和5G技术的发展,大量的数据将在终端设备上进行处理。为了满足这些设备的计算能力有限的特点,未来的大模型将更加注重边缘计算。这意味着我们需要开发新的模型架构和算法,以便于在边缘设备上高效地运行大模型。在未来,我们有望看到更大规模、更复杂、更具泛化能力的大模型出现,这将为人工智人工智能领域带来更多的突破和创新。在金融保险这一垂直领域中,随着技术的持续进步与应用场景的广泛延伸,大模型在落地应用中的角色也逐步从“辅助”和“赋能”转变为更

131、具主导性和引领性的角色。大模型的深度认知能力,将改变行业对风险认知与管理的能力,推动保险行业的精算模式从“粗放预测”向“精准预知”升级,同时推动风险管理从相对被动的“等量管理”向相对主动的“减量管理”转变。这一转变将重塑保险行业的商业模式,引领一场颠覆性的变革,开启新67大模型技术深度赋能保险行业白皮书(2023)的发展篇章。在这个过程中,大模型的应用将为企业带来更多的商业机会和价值,并对保险行业的未来发展产生深远的影响。以大模型为代表的生成式人工智能迎来爆发式发展的同时,其所衍生的隐私、安全问题以及被滥用、恶意使用的情况也逐步显露。全球主要国家、国际组织、企业及研究机构纷纷呼吁加强人工智能治

134、景和界限,并通过合理的激励机制同时激发人类和大模型的潜力,使其紧密协同开展创作型工作。(4)增强可解释性:通过采用易于解释的算法、可视化的模型结构等方式,使模型的决策过程更易于理解;通过记录模型训练及推理过程中的日志等方式,让模型运行原理及过程更透明、公开。(5)确保公平、公正:通过数据集偏见评估、标注人员管理和培训、数据增强等方式,确保AIGC算法和系统的公平和公正性,避免模型对某些群体的偏见和歧视。(6)增强可问责性:首先是建立问责机制,通过数字水印等溯源技术,对模型生成的文本、图片、代码、音频等数据责任方进行溯源;并对模型及系统设计、开发、测试、部署过程中的责任主体进行管理。然后是建立版

135、本管理体系,完整记录版本迭代信息,并持续进行跟踪和监测。大模型生态的协同发展需要政府、产业、学术界和研究机构等多方的共同参与和开放合作,以推进AI大模型的研发与产业化进程,进而提升我国在人工智能领域的国际竞争力。具体来说,大模型生态可以从以下几个方面进行协同发展:数据、GPU算力、算法模型、研发平台、插件体系、应用落地、资本投入。69(1)数据数据是AI大模型训练和优化的基石,大模型生态的发展离不开数据的丰富和多样化。为了支持更优性能的模型,需要收集和整理更多的高质量数据,包括结构化数据(如表格、数据库等)和非结构化数据(如文本、图像、音频、视频等)。同时,数据隐私和安全问题也需要得到足够的重

138、性,满足各种应用场景的需求。鼓励各方开发插件库,丰富大模型的应用场景,提升其实际应用价值。易用性:提供简洁易用的API和SDK,降低开发者的使用门槛。灵活性:支持多种场景和需求的定制化开发,满足不同用户的个性化需求。(6)应用落地大模型在众多领域都有广泛的落地场景,如智能语音助手、自动文本生成、计算机视觉识别等。我们需要不断挖掘和拓展大模型的应用场景,实现技术与市场的有机结合。市场调研:深入了解各行业的需求和痛点,发掘大模型的潜在应用场景。产品策划:基于市场需求,策划有针对性的大模型产品和服务。(7)资本投入大模型生态的发展需要充足的资金支持。政府、企业和社会资本应共同努力,为大模型生态提供持

140、果企业的数据资源和数据处理能力不足,就会限制大模型的应用效果和准确性。(2)技术挑战:大模型的训练和优化、部署和维护均需要先进的技术支持和专业的研发团队,例如深度学习框架、分布式计算、参数高效微调、模型加速等。而这些技术和知识的掌握和应用需要长期的积累和实践,需要对技术发展趋势和市场应用有深刻的了解。如果企业的技术能力和研发团队不足,就会限制大模型的应用效果和创新能力。(3)合规性挑战:应用大模型进行技术场景落地时,应特别注重敏感数据和技术的合规、合法性,确保在法律和政策监管范围内进行技术的研发。防止漏洞攻击和数据被窃取而造成发的经济损失与合规成本,做到系统安全和隐私保护。(4)隐私和安全:大

142、支持,例如高性能计算机、大规模集群等。而这些设备和资源的成本非常高昂,需要大量的资金投入和技术支持。如果企业的计算资源和算力不足,就会限制大模型的应用效果和范围。企业的大模型落地应用面临着诸多挑战与限制,这需要我们进行全面且系统的分析、评估与实施。唯在我们成功应对这些挑战并充分发挥大模型的潜能之后,企业方能实现AI价值创造和商业目标双达成的理想局面。5.5应对措施建议面对大模型带来的机遇和挑战,企业可以从以下几方面着手,积极应对挑战,提升自身竞争力;把握机遇,推动保险行业的高价值可持续发展。(1)优化和调整业务策略:企业应根据大模型的发展趋势和市场需求,调整和优化自身的业务策略,以便更好地适

Kyl**Yu...升级为高级VIP131**31...升级为至尊VIP(大促版)

wei**n_...升级为高级VIPwei**n_...升级为至尊VIP(大促版)

wei**n_...升级为高级VIPwei**n_...升级为高级VIP

wei**n_...升级为高级VIP135**81...升级为标准VIP

wei**n_...升级为高级VIP188**39...升级为高级VIP

微**...升级为至尊VIP(大促版)186**66...升级为至尊VIP(大促版)

wei**n_...升级为高级VIP186**66...升级为标准VIP

137**10...升级为至尊VIP(大促版)137**10...升级为标准VIP

134**96...升级为高级VIPwei**n_...升级为高级VIP

186**36...升级为至尊VIP(大促版)wei**n_...升级为至尊VIP(大促版)

wei**n_...升级为至尊VIP(大促版)138**51...升级为至尊VIP(大促版)

wei**n_...升级为标准VIPwei**n_...升级为至尊VIP(大促版)

wei**n_...升级为高级VIPsen**rl...升级为高级VIP

133**00...升级为至尊VIP(大促版)186**65...升级为至尊VIP(大促版)

春**...升级为至尊VIP(大促版)wei**n_...升级为至尊VIP(大促版)

wei**n_...升级为标准VIPni**w升级为至尊VIP(大促版)

wei**n_...升级为标准VIPwei**n_...升级为标准VIP

158**77...升级为高级VIP187**73...升级为标准VIP

刘晨升级为标准VIP137**20...升级为至尊VIP(大促版)

wei**n_...升级为至尊VIP(大促版)墨涵**n...升级为至尊VIP(大促版)

wei**n_...升级为标准VIPDar**nn升级为高级VIP

wei**n_...升级为至尊VIP(大促版)wei**n_...升级为至尊VIP(大促版)

136**24...升级为标准VIP158**07...升级为标准VIP

139**04...升级为至尊VIP(大促版)Do**it升级为高级VIP

wei**n_...升级为高级VIP爱**...升级为至尊VIP(大促版)

wei**n_...升级为高级VIP莜尼升级为至尊VIP(大促版)

wei**n_...升级为至尊VIP(大促版)wei**n_...升级为高级VIP

139**75...升级为至尊VIP(大促版)180**28...升级为至尊VIP(大促版)

wei**n_...升级为标准VIP180**80...升级为标准VIP

186**38...升级为至尊VIP(大促版)159**26...升级为高级VIP

186**40...升级为标准VIP177**50...升级为高级VIP

186**81...升级为至尊VIP(大促版)137**16...升级为至尊VIP(大促版)

137**16...升级为至尊VIP(大促版)185**29...升级为至尊VIP(大促版)

185**29...升级为高级VIPwei**n_...升级为高级VIP

138**43...升级为高级VIPwei**n_...升级为标准VIP

wei**n_...升级为标准VIP137**66...升级为标准VIP

聂**升级为至尊VIP(大促版)186**57...升级为至尊VIP(大促版)

186**61...升级为至尊VIP(大促版)186**70...升级为至尊VIP(大促版)

186**87...升级为标准VIP156**19...升级为至尊VIP(大促版)

139**32...升级为标准VIPshu**xt升级为至尊VIP(大促版)

wei**n_...升级为至尊VIP(大促版)138**18...升级为至尊VIP(大促版)

185**25...升级为高级VIP138**18...升级为标准VIP

133**70...升级为至尊VIP(大促版)wei**n_...升级为至尊VIP(大促版)

THE END
1.阳光财产保险官方网站阳光车险 投保方便线上快速算价 直接购买 理赔快捷在线报案 可视频查勘 车险直销 新车 立即报价 阳光老客户续保 > 客户服务 在线办理随时查询您的保单信息 网上理赔随时掌握保险理赔进度 财险服务时限。去查看>> 保单服务 保单查询/下载等,更多服务可以下载阳光车生活APP办理使用 https://chexian.ygbx.com/NetCar/index.html
2.阳光保险集团股份有限公司,阳光保险官方网站,网上购买保险,保险阳光保险集团股份有限公司是中国500强企业、中国服务业100强企业,提供人寿保险,财产保险,养老保险,医疗保险,车险,健康保险,儿童保险,意外保险,旅游保险,重大疾病保险,理财保险等保险业务。阳光保险集团在国内保险公司排名中长期处于领先位置,个人保险和团体保险并重,不断在https://www.sinosig.com/v/?qd=GW&qd=GW
3.阳光车险计算器汽车保险费用计算阳光车险官网报价、电话、理赔查询阳光车险电话号码客服热线:95510投保热线:4000-000-000阳光车险官方网站阳光车险网站地址https://www.sinosig.com/阳光车险报价计算器阳光车险投保报价计算https://chexian.ygbx.com/NetCar/NewInsurance_DC11PD1230010004.shtmlhttps://xuefa122.cn/insurance/info/7.html
4.阳光车险报价明细查询方式有哪些?阳光车险报价计算器怎么使用前言:而阳光车险作为一家知名的保险公司,为广大车主提供了方便快捷的报价计算器和报价明细查询服务。本文将详细介绍阳光车险报价计算器的使用方法以及报价明细查询的方式。阳光车险报价计算器和报价明细查询服务为车主们提供了便捷的服务,让您能够更准确地了解保费估算和保单详情。 https://www.shenlanbao.com/zhishi/6-566152
5.阳光电话车险查询车险查询金投保险目前阳光车险的全国统一客服专线为95510,也可以登录阳光保险官方网站进行查询。 金投保险网(http://insurance.cngold.org/)讯,阳光电话车险查询?伴随着我国汽车销量的快速增长,与汽车相关的产业也得到了迅速的发展。汽车服务业中,车险行业一直是人们关注的重点。购买一辆新车,为爱车上一份汽车保险再理所当然不过了。https://insurance.cngold.org/cxcx/c5312879.html
6.阳光车险查询系统阳光车险查询系统是一种方便快捷的在线服务平台,旨在帮助车主查询和了解自己的车险情况。通过该系统,用户可以轻松地了解自己的车险保单信息、保险费用、理赔记录等相关内容。首先,阳光车险查询系统提供了一个简单易用的界面,用户只需输入自己的车牌号码和身份证号码,系统就能够快速查询到相关的车险信息。用户可以随时随地通https://www.xyz.cn/toptag/huaxiarenshoubaojianhui-75735.html
7.阳光保险车险报价攻略,一文看懂车险是每个有车一族都需要购买的保险,它可以为车主在发生交通事故时提供经济上的保障。阳光保险是国内知名的保险公司,其车险产品种类齐全、保障范围广泛,深受车主的青睐。 阳光保险车险报价主要根据以下因素来计算: 车辆类型:车辆类型越高档,保费越高。 车辆价值:车辆价值越高,保费越高。 https://www.pupu123.com/pingce/epk6qt.html
8.阳光保险车险价格表阳光保险车险价格表 【太平洋汽车】为您整理最新的阳光保险车险价格表相关热门资讯、阳光保险车险价格表图片和阳光保险车险价格表视频内容,太平洋汽车专题关注汽车行业热点,解决汽车用户痛点,聚焦阳光保险车险价格表专业内容,尽在太平洋汽车。 阳光保险车险价格表https://www.pcauto.com.cn/zt/zt616587.html
9.4s店祝福短信7篇(全文)1、用户对销售、维修报价的查询; 2、用户咨询各种故障原因; 3、车辆养护档案信息查询; 4、用户违章(驾证扣分、电子警察)记录查询; 5、交通路况信息查询。 (三)自动通知: 1、系统以最快的时间随时随地自动通知或提醒用户(即使在外出差的用户也能收到通知和提醒;不会造成电话通知的成本)保养车辆、保险续保、违章https://www.99xueshu.com/w/file1siytdom.html
10.阳光保险车险怎么样可靠吗?阳光车险好吗阳光保险车险怎么样可靠吗?阳光车险好吗 2005年成立的阳光保险面对其他保险巨头,可能都得叫上一声“大哥”,不过年轻有为,阳光保险只用5年时间便跻身中国500强企业、中国服务业100强企业。如今已经是国内七大保险集团之一。 保险可靠不可靠,关键在于理赔数据https://www.yoojia.com/ask/3-12125197912275919247.html
11.合肥阳光车险合肥阳光车险是阳光保险集团的重要分支机构,近年来,合肥阳光车险发展较快。合肥阳光车险专家提醒车主,在投保合肥阳光车险之后最好进行保单查询,从而进一步明确自己的投保情况。合肥阳光车险查询一:网上查询合肥阳光车险推出了在线账户管理工具,车险的客户可登陆车险官方网站,通过这个系统查询保单信息,此项服务应用起来十分便捷https://m.huize.com/study/studytag/word-9444.html
12.阳光车险怎么查保单?保险知识问答1.网点柜台查询: 投保人可以携带身份证等有效证件,主动前往当地阳光保险公司营业厅网点,按照工作人员的引导进行查询。 2.客服电话查询: 投保人可拨打阳光车险统一客服热线电话95510,接通电话后,按照电话语音提示转接人工服务,向工作人员提供身份证号、姓名、车牌后,即可在系统中查询到保单。 3.微信查询: 投保人可以在https://www.51credit.com/wenda/811197.html
13.阳光保险汽车保险公司车车友交流懂车帝提供阳光保险汽车保险公司车的车友交流详细内容,懂车帝是一个汽车资讯平台,懂车更懂你。我们提供最新汽车报价,汽车图片,汽车价格大全,行情、评测、导购等内容,看车选车买车就上懂车帝。https://www.dongchedi.com/tag/ugc/10939804
14.阳光车险理赔电话号码查询是多少,阳光车险理赔电话号码查询提供阳光车险的理赔电话查询信息,方便快捷地获取阳光车险的理赔服务联系方式,解决您的车险理赔问题。 ,理想股票技术论坛https://www.55188.com/topics-8145237.html